RESPON PERTUMBUHAN DAN HASIL TANAMAN PETSAI DAN BUNCIS TERHADAP PENGGUNAAN BAHAN AGROKIMIA RENDAH Pb

Authors

  • Yekti Sri Rahayu Universitas Wisnuwardhana
  • Mikael Adri Budi Sulistyo Universitas Wisnuwardhana

DOI:

https://doi.org/10.31328/ja.v17i1.4567

Keywords:

buncis, petsai, pestisida, pupuk, Pb, chickpea, Chinese cabbage, fertilizer, pesticide

Abstract

Sejumlah bahan kimia yang rutin diaplikasikan pada lahan pertanian sebagai pupuk dan pestisida dapat meningkatkan kadar logam berat terutama Cd, Pb dan As, di dalam tanah. Diperlukan upaya untuk meminimalisir paparan Pb di dalam tanah dan tanaman budidaya di lahan pertanian. Percobaan lapang ini bertujuan mengetahui pengaruh penggunaan bahan-bahan agrokimia rendah Pb terhadap pertumbuhan dan hasil tanaman sayuran. Percobaan menggunakan Rancangan Split Split Plot yang terdiri atas 3 faktor yaitu jenis tanaman (T): petsai dan buncis; jenis pestisida (D): rendah Pb dan tanpa Pb; dan jenis pupuk (P): rendah Pb dan Tanpa Pb, dimana masing-masing kombinasi perlakuan diulang tiga kali. Hasil percobaan menunjukkan bahwa pemberian pestisida dan pupuk rendah Pb maupun tanpa Pb, mempengaruhi pertumbuhan dan hasil tanaman petsai dan buncis. Tanaman petsai dan buncis yang diberi pestisida dan pupuk berkadar Pb rendah menghasilkan bobot kering total lebih rendah tinggi yaitu 112, 6 g/tanaman pada petsai dan 73,67 g/tanaman pada buncis, dibanding yang diberi pestisida dan pupuk tanpa Pb. Tanaman petsai yang diberi pestisida dan pupuk berkadar Pb rendah rata-rata menghasilkan bobot segar krop per tanaman 43,48% lebih tinggi dibanding yang diberi pestisida dan pupuk tanpa kadar Pb. Pada buncis, hasil bobot segar buah/polong yang diberi pestisida dan pupuk dengan kadar Pb rendah dan tanpa Pb tidak menunjukkan perbedaan. Agrochemicals that are routinely applied to lands as fertilizers and pesticides can increase the levels of heavy metals, especially Cd, Pb and As, in the soil. The Efforts are needed to minimize Pb exposure in soil and crop. The field experiment conducted to determine the effect of using low-lead agrochemicals on the growth and yield of vegetable crops. The experiment used a Split Split Plot Design which consisted of 3 factors, namely the type of plant (T): Chinese cabbage and beans; type of pesticide (D): low Pb and no Pb; and fertilizer type (P): low Pb and no Pb, where each treatment combination was repeated three times. The results showed that applying pesticides and fertilizers with low or no Pb affected the growth and yield of Chinese cabbage and green beans. Chinese cabbage and beans that were given pesticides and fertilizers with low Pb level produced a lower total dry weight namely 112.6 g/plant on Chinese cabbage and 73.67 g/plant on beans, compared to those that were given pesticides and fertilizers without Pb. Chinese cabbage treated with pesticides and fertilizers with low Pb levels produced an average fresh weight of heads per plant 43.48% higher than those given pesticides and fertilizers without Pb content. Beans treated with pesticides and fertilizers with low Pb levels showed no difference in producing a fresh weight of fruit/pods than treated without Pb.

Author Biographies

Yekti Sri Rahayu, Universitas Wisnuwardhana

Program Studi AgroteknologiFakultas Pertanian, Universitas Wisnuwardhana, Malang

Mikael Adri Budi Sulistyo, Universitas Wisnuwardhana

Prodi Agroteknologi, Fakultas Pertanian, Universitas Wisnuwardhana

References

AlKhader, A. 2015. The Impact of Phosphorus Fertilizers on Heavy Metals Content of Soils and Vegetables Grown on Selected Farms in Jordan. Agrotechnology. 4: 137.

Atafar, Z., A. Mesdaghinia, J. Nouri, M. Homaee, M. Yunesian, M. Ahmadimoghaddam, and A.H. Mahv. 2010. Effect of Fertilizer Application on Soil Heavy Metal Concentration. Environmental Monitoring and Assessment. 160: 83–89.

DalCorso, G., E. Fasani, and A. Furini. 2013. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Frontiers in Plant Science. 4: 1–7.

Figlioli, F., M. C. Sorrentino, V. Memoli, C. Arena, G. Maisto, S. Giordano, F. Capozzi, and V. Spagnuolo. 2018. Overall Plant Responses to Cd and Pb Metal Stress in Maize : Growth Pattern, Ultrastructure, and Photosynthetic Activity. Environmental Science and Pollution Research, 26 (2): 1781–1790.

Islam, E., D. Liu, T, Li, X. Yang, X. Jin, Q. Mahmood, S.Tian, and J.Li. 2008. Effect of Pb Toxicity on Leaf Growth, Physiology and Ultrastructure in the Two Ecotypes of Elsholtzia argyi. Journal of Hazardous Materials. 154 (1–3): 914–926.

Kadhim, R. E. 2011. Effect of Pb, Ni and Co in Growth Parameters and Metabolism of Phaseolus aureus Roxb. Euphrates Journal of Agriculture Science. 3 (3): 10–14.

Kopittke, P. M., C.J. Asher, R.A. Kopittke, and N.W. Menzies. 2007. Toxic Effects of Pb2+ on Growth of Cowpea (Vigna unguiculata). Environmental Pollution. 150 (2): 280–287.

Kuzminov, F. I., C.M. Brown, V.V. Fadeev, and M.Y. Gorbunov. 2013. Effects of Metal Toxicity on Photosynthetic Processes in Coral Symbionts, Symbiodinium spp. Journal of Experimental Marine Biology and Ecology. 446: 216–227.

Lamhamdi, M., Q. E. Galiou, A. Bakrim, J.C. Novoa-Munoz, M. Arias-Esteves, A. Aarab, and R. Lafont. 2013. Effect of Lead Stress on Mineral Content and Growth of Wheat (Triticum aestivum) and Spinach (Spinacia oleracea) Seedlings. Saudi Journal of Biological Sciences. 20: 29–36.

Leal-alvarado, D. A., F. Espadas-Gil, L. Saenz Carbonell, C.T. May, J.M. Santamaria. 2016. Lead Accumulation Reduces Photosynthesis in the Lead Hyper-Accumulator Salvinia minima Baker by Affecting the Cell Membrane and Inducing Stomatal Closure. Aquatic Toxicology. Elsevier B.V. 171: 37–47.

Mallhi, Z. I., M. Rizwan, A. Mansha, Q. Ali, S. Asim, S. Ali, A. Hussain, S.H. Alrokayan, H.A. Khan, P. Alam, and P. Ahmad. 2019. Citric Acid Enhances Plant Growth, Photosynthesis, and Phytoextraction of Lead by Alleviating the Oxidative Stress in Castor Beans. Plants. 8(524): 1–16.

Muchuweti, M., J. Birkett, E. Chinyanga, R. Zvauya, M. Scrimshaw, and J. Lester. 2006. Heavy Metal Content of Vegetables Irrigated with Mixtures of Wastewater and sewage Sludge in Zimbabwe: Implications for Human Health. Agriculture, Ecosystems and Environment. 112(1): 41–48.

Oladele, E.O., T. Yahya, P.G.C. Odeigah, and I.A.Taiwo. 2017. The Influence of Pb and Zn Contaminated Soil on the Germination and Growth of Bambara Nut (Vigna subterranea). Journal of Applied Sciences and Environmental Management. 21(4): 761–768.

Onder, D., S. Onder, H. Daghan, and V. Uygur. 2016. The Ability Of Brassica napus L. To Remove Lead (Pb) from the Soil at Different Irrigation Levels and Pb Concentrations. Fresenius Environmental Bulletin. 25(1): 200–209.

Pourrut, B., M. Shahid, C. Dumat, P. Winterton, and E. Pinelli. 2011. Lead Uptake, Toxicity, and Detoxification in Plants. D.M. Whitacre (ed.), Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology. 213: 113–136.

Rahayu, Y. S., T. Wardiyati, and M.D. Maghfoer. 2020. Accumulation of Pb in Chinese cabbage (Brassica rapa) and bean (Phaseolus vulgaris) from the use of Fertilizer and Pesticide. J. Degrade. Min. Land Manage. 7(3): pp. 2139–2148.

Rucińska-Sobkowiak, R. 2016. Water Relations in Plants Subjected to Heavy Metal Stresses. Acta Physiologiae Plantarum. 38(11).

Saleem, M., H.N. Asghar, Z.A. Zahir, and M. Shahid. 2018. Impact of Lead Tolerant Plant Growth Promoting Rhizobacteria on Growth, Physiology, Antioxidant Activities, Yield and Lead Content in Sunflower in Lead Contaminated Soil. Chemosphere. 195: 606–614.

Shahid, M., S. Khalid, G. Abbas, N. Shahid, M. Nadeem, M. Sabir, M. Aslam, and C. Dumat. 2015. Heavy Metal Stress and Crop Productivity in Hakeem, K. R. (ed.) Crop Production and Global Environmental issues. Springer International Publishing AG Switzerland. pp. 1–25.

Shanmugam, V., J. Lo, C. Wu, S. Wang, C. Lai, E.L. Conolly, J. Huang, and K. Yeh. 2011. Differential Expression and Regulation of Iron-Regulated Metal Transporters in Arabidopsis halleri and Arabidopsis thaliana - the Role in Zinc Tolerance. New Phytologist. 190(1): 125–137.

Sharma, P. and R.S. Dubey. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology. 17(1): 35–52.

Verma, S. and R.S. Dubey. 2003. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Science. 164(4): 645–655.

Xu, P., C.X. Sun, X.Z. Ye, W.D. Xiao, Q. Zhang, and Q. Wang. 2016. The Effect of Biochar and Crop Straws on Heavy Metal Bioavailability and Plant Accumulation in a Cd and Pb Polluted Soil. Ecotoxicology and Environmental Safety. Elsevier. 132: 94–100.

Ying, R. R., R.L. Qi, Y.T. Tang, P.J. Hu. H. Qiu, H.R. Chen, T.H. Shi, and J.l. Morel. 2010. Cadmium Tolerance of Carbon Assimilation Enzymes and Chloroplast in Zn/Cd Hyperaccumulator Picris divaricata. Journal of Plant Physiology. Elsevier. 167(2): 81–87.

Zhuang, P., M.B. McBride, H. Xa, N. Li, and Z. Li. 2009. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of Dabaoshan Mine, South China. Science of the Total Environment. Elsevier B.V. 407(5): 1551–1561.

Downloads

Published

2023-05-31

Issue

Section

Articles