FITOREMEDIASI MERKURI DARI TANAH TERCEMAR LIMBAH BEKAS TAMBANG EMAS RAKYAT DENGAN RUMPUT TEKI (Cyperus kyllingia)
DOI:
https://doi.org/10.31328/ja.v13i1.988Keywords:
Cyperus kyllingia, fitoremediasi, polusi HgAbstract
Polusi lingkungan akibat kegiatan penambangan dapat dikurangi dengan fitoremediasi. Cyperus kyllingia adalah salah satu tanaman hyperaccumulator yang dapat mengurangi kadar logam berat seperti Hg di Desa Sekotong Tengah, Kecamatan Sekotong, Kabupaten Lombok Barat. Penelitian ini dilakukan dengan menanam C. kyllingia dalam polybag 5 kg dengan perbandingan 70%: 30% tanah dan tailing emas. Tailing emas dibagi menjadi dua jenis, Sianidasi (T1) dan Amalgamasi (T2). Pada 53 DAP, ligan natrium sianida (NaCN) ditambahkan dengan 2 ligan berbeda, 4g dan 8g dalam tanah. Cyperus kyllingia menyerap 89,97 mg / kg Hg pada kanopi dan 78,21 mg / kg Hg pada akar. Penambahan ligan Natrium sianida (NaCN) dapat meningkatkan penyerapan Hg oleh C. kyillinga. Penyerapan Hg pada tanaman dengan penambahan ligan lebih tinggi daripada tanaman tanpa penambahan ligan.References
Fauziah, A. B. 2009. Pengaruh Asam Humat dan Kompos Aktif untuk Memperbaiki Sifat Tailing denga Indikator Pertumbuhan Tinggi Semai Enterolobium cyclocarpum Griseb dan Altingia exelsa Noronhae. [skripsi] Departemen Silvikultur Fakultas Kehutanan IPB. Bogor.
Ferreira, Css., C. Lopes Vieira, H. Azevedo, and G. Caldeira. 1998. The effects of high levels of Hg on senescence, proline accumulation and stress enzymes activities of maize plants. Agrochimica 42(5): 209-218.
Hidayati, N, T. Juhaeti, dan F. Syarif. 2009. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction. Hayati Journal of Biosciences. Vol. 16(3): 88-94.
Hylander, L.D., D. Plath, C.R. Miranda, S. Lucke, J. Ohlander, and A.T.F. Rivera. 2007. Comparison of different gold recovery methods with regard to pollution control and efficiency. Clean. 35: 52-61.
Irwan, N., I.I. Yaacob, M.R. Johan, , and B.C. Ang. 2009. Characterization and Stability Monitoring of Maghemite Nanoparticle Suspensions. In: Advanced Materials Research Vol. 576 (2012) pp 398-401. Eds. Trans Tech Publications, Switzerland.
Jadia, C.D. and M.H. Fulekar. 2009. Phytoremediation of Heavy Metals: Recent Techniques. African Journal of Biotechnology. 8, 921-928.
Krisnayanti, B.D., Z. Arifin, B. Sudirman, and A. Yani. 2012. Mercury Concentration on Tailing and Water from One Year of ASGM at Lantung, Sumbawa, Indonesia. In: Environmental, Socio-economic, and Health Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 61-66. UB Press, Malang, Indonesia.
Ling, T., Y. Fangke, and R. Jun. 2010. Effect of Mercury to Seed Germination, Coleoptile Growth and Root Elongation of Four Vegetables. Research Journal in Phytochemistry 4 (4): 225-233.
Moreno, F.N., C.W.N. Anderson, B.H. Robinson, and R.B. Stewart. 2004. Phytoremediation of mercury-contaminated mine tailings by induced plant-Hg accumulation. Environmental Practice 6(2): 165-175.
Reichman, SM, 2002, ‘The Responses of Plants to Metal Toxicity’, A Review Foccusing on Copper, Manganese and Zinc, The Australian Minerals Energy Environment Foundation Published as Orcasional Paper No.11.
Shofi, M. 2017. Pengaruh Logam Berat Merkuri (Hg) Terhadap Perkecambahan Biji Kacang Hijau (Vigna radiata L.).
Telmer, K. 2007. Mercury and Small Scale Gold Mining –Magnitude and Challenges Worldwide. GEF/UNDP/UNIDO Global Mercury Project.
Truu, J., E. Talpsep, E. Vedler, E. Heinaru, and A. Heinaru. 2003. Enhanced Biodegradation of Oil Shale Chemical Industry Solid Wastes by Phytoremediation and Bioaugmentation. Estonia Academy Publisher.
Yoon, J., X. Cao, Q. Zhou, and L.Q. Ma. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment. 368: 456-464.