PENGARUH JENIS MATERIAL TERHADAP KONDUKTIVITAS PANAS DAN VOLUME GARAM
DOI:
https://doi.org/10.31328/ciastech.v0i0.3322Keywords:
Pelat penyerap, jenis material, konduktivitas panas, volume garam.Abstract
Pelat penyerap merupakan peralatan yang penting pada sistem solar still tipe pasif, sehingga perlu untuk di kembangkan untuk meningkatkan kinerja solar still. Pengembangan di lakukan membuat bentuk pelat penyerap model sirip menggunakan berbagai jenis material dan dimensi pasir. Jenis material dan dimensi pasir akan berpengaruh terhadap porositas, konduktivitas panas, laju penguapan, perkembangan nilai konduktivitas dan volume garam. Sehingga perlu di lakukan penelitian untuk mengetahui nilai konduktivitas dan volume garam. Penelitian ini merupakan pengembangan dari penelitian sebelumnya. Metode yang di gunakan adalah metode eksperimen menggunakan jenis material dengan variasi daya. Material yang digunakan dalam penelitian ini adalah jenis material pelat penyerap mortar dengan komposisi 1 semen dengan 2 pasir. Pasir yang digunakan pasir lumajang dan pasir besi dengan dimensi pasir rata-rata 0.125 mm dan 0.125 mm. selain di gunakan jenis batu sebagai pembanding. Hasil penelitian Jenis material PB.0.125 memiliki nilai konduktivitas panas dan volume garam tertinggi dibandingkan dengan jenis material dan dimensi pasir yang lain pada setiap variasi daya.ÂReferences
Sudjito, S., 2015. Teknologi Tenaga Surya (Pemanfaatan dalam bentuk energy panas), Universitas Brawijaya Press.
Agrawal, A., Rana, R. S. 2019. Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon, 5, pp. 1-38.
Ali, C., Rabhib, K., Nciri R., Nasria F. & Attyaoui S., 2014. Theoretical and experimental analysis of pin fins absorber solar still. Desalination and Water Treatment: 1-7
Arani, R.P., Sathyamurthy, R., Chamkha, A. et al. (2021). Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13126-y
Beyhaghi, Saman.,Geoffroy., Sandrine.,Prat., Marc., Pillai., Krishna M., 2014. Wicking and evaporation of liquids in porous wicks: a simple analytical approach to optimization of wick design. AIChE Journal, vol. 60 (n° 5): 1930-1940. ISSN 0001-1541
Hansen R.S., Narayanan, C.S., & Murugavel, K.K., 2015. Performance analysis on inclined solar still with different new wick materials and wire mesh. Desalination 358: 1–8
Nugroho, Eko H., 2010. Analisis Porositas dan Permeabilitas Beton dengan Bahan Tambah Fly Ash untuk Perkerasan Kaku (Rigid Pavement). Tidak dipublikasikan. Skripsi. Universitas sebelas maret.
Sharqawy, Mostafa H., John H. Lienhard V & Syed M. Zubair., 2010. The thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment: 16. 354–380
Nield, D. A & Bejan Adrian. Convection in porous media. Fourth Edition
Ghanbarian, B., and H. Daigle (2016), Thermal conductivity in porous media: Percolation-based effective-medium approximation, Water Resour. Res., 52, 295–314, doi:10.1002/2015WR017236.
Ismail, N.R., Soeparman, S., Widhiyanuriyawan, D., Wijayanti, W., (2018). The influence of pores size and type of aggregate on liquid mass transfer in porous media. Journal of Engineering and Applied Sciences (JEAS). Volume 13 Issue 17.
Ismail, N.R., Soeparman, S., Widhiyanuriyawan, D., Wijayanti, W., (2019). The influence of pores size and type of aggregate on capillary heat and mass transfer in porous. Journal of Applied Engineering Science (JAES). Volume 17 No. 1.
Sharqawy,Mostafa H., (2013). New correlations for seawater and pure water thermal conductivity at different temperatures and salinities. Desalination 313. 97–104.
Sharqawy, Mostafa H., John H. Lienhard V & Syed M. Zubair., 2010. The thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment: 16. 354–380.
Ozbek, H., and Phillips. S.L., (1979). Thermal conductivity of aqueous NaCl solution from 200C to 3300C. Lawrence Berkeley Laboratory. University of California. Berkeley, CA 94720.
Ghanbarian, B., and H. Daigle (2016), Thermal conductivity in porous media: Percolation-based effective-medium approximation, Water Resour. Res., 52, 295–314, doi:10.1002/2015WR017236.
Bergstad, M., et al., (2017). The influence of NaCl concentration on salt precipitation in heterogeneous porous media. Water Resour. Res. 53(2), 1702–1712. https://doi.org/10.1002/2016WR020060]
Mejri, et. al., 2020. Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous media with a Real Field Application. Geosciences 2020, 10, 395; doi:10.3390/geosciences10100395.
Dashtian, H., Shokri, N., & Sahimi, M. (2018). Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in Water Resources, 112, 59–71. doi:10.1016/j.advwatres.2017.12.004
Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347–1358. doi:10.1016/s0008-8846(99)00002-2
Chen, J., Li, E., & Luo, J. (2018). Characterization of Microscopic Pore Structures of Rock Salt through Mercury Injection and Nitrogen Absorption Tests. Geofluids, 1–7. doi:10.1155/2018/9427361