PRESENTASI ECG KONDISI NORMAL DAN ABNORMAL DALAM SPEKTRUM FREKUENSI MENGGUNAKAN EXCEL
DOI:
https://doi.org/10.31328/ciastech.v1i1.657Keywords:
spektrum, excel, diskrit, ECG analogAbstract
Elektro kardiogram umumnya dipresentasikan dalam amplitude basis waktu. Dalam basis frekuensi, suatu sinyal akan dipresentasikan dalam magnitude terhadap frekuensinya, sehingga terlihat fekuensi – frekuensi penyusunnya. Penelitian ini bertujuan untuk merepresentasikan Elektro kardiogram basis spasial kondisi Normal dan Abnormal kedalam spectrum frekuensi menggunakan Program Excel. Metode sampling digunakan untuk mengubah sinyal analog kontinyu menjadi sinyal diskrit. Penerapan metode Fast Fourier Transform pada data diskrit akan diperoleh magnitude berbasis frekuensi yang dikenal dengan spectrum frekuensi. Lead II merupakan acuan parameter bagi lead-lead yang lain karena memiliki morfologi yang jelas untuk amplitude PQRST. Dalam penelitian ini, data diskrit ECG diperoleh dari Physionet MIT-BIH dan Laboratorium CVCU RS Saiful Anwar Malang. Hasil penelitian menunjukkan bahwa pada rentang frekuensi 0-40 Hz memiliki spectrum frekuensi yang tinggi untuk kondisi normal sedangkan untuk kondisi abnormal spektrumnya rendah. Pada frekuensi 0-0.05 Hz Phasenya menurun untuk kondisi normal sedangkan kondisi abnormal phasenya menaik.References
Afkhami, R.G., Tinati, M.A., 2015. ECG based detection of left ventricular hypertrophy using higher order statistics, in: 2015 23rd Iranian Conference on Electrical
Engineering. Presented at the 2015 23rd Iranian Conference on Electrical Engineering, pp. 1–5. https://doi.org/10.1109/IranianCEE.2015.7146172
Arkadiy, K., 2015. The Algorithm of Estimation of Parameters of Heart Rate, PQ and ST Intervals with Daily Monitoring Using a Portable Multifunction Device, in: 2015 International Conference on Engineering and Telecommunication (EnT). Presented at the 2015 International Conference on Engineering and Telecommunication (EnT), pp. 82–84. https://doi.org/10.1109/EnT.2015.25
Ashish Birle, Suyog Malviya, Deepak Mittal, 2015. A Novel Technique of R-Peak Detection for ECG Signal Analysis: Variable Threshold Method. Int. J. Adv. Res. Electron. Commun. Eng. IJARECE 4.
Cameron, J.R., Skofronick, J.G., 1978. Medical physics. Wiley.
Chia, B., 2000. Cninical Electrocardiography, Third Edition. ed. World Scientific, New Jersey.
Foster, D.B., 2007. Twelve-Lead Electrocardiography, Second. ed. Springer-Verlag London, London.
Gothwal, H., Kedawat, S., Kumar, R., 2011. Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network. J. Biomed. Sci. Eng. 04, 289. https://doi.org/10.4236/jbise.2011.44039
Guyton, A.C., Hall, J.E., 2006. Textbook of Medical Physiology, 11th ed. Elsevier Saundes, Mississippi.
Hussain A. Jaber AL-Ziarjawey, Ilyas Çankaya, 2015. Heart Rate Monitoring and PQRST Detection Based on Graphical User Interface with Matlab. Int. J. Inf. Electron. Eng. vol.5 no.4, 6. https://doi.org/DOI: 10.7763/IJIEE.2015.V5.550
Iaizzo, P.A., 2005. Handbook of Cardiac Anatomy, Physiology, and Devices, ANSI Z39.48-1984 (American National Standards Institute) Permanence of Paper for Printed Library Materials. ed. © 2005 Humana Press Inc., Totowa, New Jersey 07512.
John G. Webster, 2004. Electrical Measurement, Signal Processing, and Displays. CRC PRESS Boca Raton London New York Washington, D.C.
Jones, S.A., 2007. ECG Success: Exercises in ECG Interpretation, 1 edition. ed. F.A. Davis Company, Philadelphia.
Setiawidayat, S., 2017. Software Design for the Rrepresentation of Parameter values of Electrocardiogram 12-lead. 4th Int. Conf. Adv. Mol. Biosci. Biomed. Eng. ICAMBBE 2017 4th, 6.
Setiawidayat, S., Joegijantoro, R., 2018. Algorithm for the Representation of Parameter Values of Electrocardiogram. Telkomnika Vol.16, no.3, 8. https://doi.org/DOI: 10.12928/TELKOMNIKA.v16i3.6934
Setiawidayat, S., Sargowo, D., Sakti, S.P., Andarini, S., 2016. The Peak of the PQRST and the Trajectory Path of Each Cycle of the ECG 12-Lead Wave. Indones. J.
Electr. Eng. Comput. Sci. 4, 169–175.
Sharma, J., Kumar, V., Ayub, S., Saini, J.P., 2012. Uniform Sampling of ECG Waveform of MIT-BIH Normal Sinus Rhythm Database at Desired Intervals. Int. J. Comput. Appl. 50, 6–9. https://doi.org/10.5120/7845-0912
Trivedi, P., Ayub, S., 2014. Detection of R Peak in Electrocardiogram. Int. J. Comput. Appl. 97, 10–13.