Image Classification of Tempe Fermentation Maturity Using Naïve Bayes Based on Linear Discriminant Analysis
DOI:
https://doi.org/10.31328/jsae.v6i1.4655Keywords:
Tempe, Naive Bayes, Linear Discriminant Analysis, Texture, ColorAbstract
One of the foods in Indonesia that has a lot of nutritional content and benefits, one of which is tempeh. Tempe is usually made by fermenting soybeans with mold under special conditions to become tempeh. In the fermentation process, tempeh producers need to monitor the maturity of the tempeh until it is suitable for consumption. To detect this maturity requires a separate effort, so that an image processing approach is proposed in this study with the support of feature selection. An image allows for various features to be taken, such as texture features using GLCM and various color features including RGB, HSV, LAB, CMYK, YUV, HCL, HIS, LCH. With so many features, it is necessary to do a selection so that computation in its classification becomes efficient. This study aims to classify tempeh fermented images using the Naive Bayes method with Linear Discriminant Analysis (LDA)feature selection for GLCM features and eight color features. Tempe fermentation image is divided into three classes, namely raw, ripe and rotten. Based on the experimental results, the average accuracy in the test is 84.06%. In testing the fastest time is 1.87 seconds and the longest is 2.20 seconds. This shows that the classification of fermented tempeh maturity with Naive Bayes with LDA feature selection can work well.References
R. S. Putri, M. I. Fanani, I. I. Kurniawan, E. P. O. Danawan, K. I. F. Sugiarto, and Istiadi, “Penerapan Teknologi Pengendali Fermentasi Tempe Bagi Usaha Krudel Lariso Kelurahan Purwantoro Kota Malang,†Conf. Innov. Appl. Sci. Technol. (CIASTECH 2018), vol. 9, no. September, pp. 353–361, 2018.
A. H. Rahmawati and D. Harmantyo, “Pola Spasial Suhu Permukaan Daratan di Kota Malang Raya , Jawa Timur,†Ind. Res. Work. Natl. Semin. Politek. Negeri Bandung, pp. 548–559, 2017.
B. Gunawan and S. Sukardi, “Rancang Bangun Pengontrolan Suhu dan Kelembaban pada Proses Fermentasi Tempe Berbasis Internet of Things,†JTEIN J. Tek. Elektro Indones., vol. 1, no. 2, pp. 168–173, 2020, doi: 10.24036/jtein.v1i2.63.
D. Wijanarko and S. Hasanah, “Monitoring Suhu Dan Kelembaban Menggunakan Sms Gateway Pada Proses Fermentasi Tempe Secara Otomatis Berbasis Mikrokontroler,†J. Inform. Polinema, vol. 4, no. 1, p. 49, 2017, doi: 10.33795/jip.v4i1.144.
M. F. Ajizi, D. Syauqy, and M. H. H. Ichsan, “Klasifikasi Kematangan Buah Pisang Berbasis Sensor Warna Dan Sensor Load Cell Menggunakan Metode Naive Bayes,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2472–2479, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.
H. S. Sambudi, “Sistem cerdas klasifikasi kematangan dan harga buah pepaya berdasarkan ekstraksi fitur gray level co-occurence matrix dengan metode naive bayes,†2021.
Q. Shandy, S. S. Panna, Y. Malago, F. Ilmu, K. Universitas, and I. Gorontalo, “Penerapan Metode Grey Level Co-Occurrence Matriks (GLCM) dan K-Nearest Neighbor (K-NN) Untuk Mendeteksi Tingkat Kematangan Buah Belimbing Bintang,†vol. 3, no. 1, pp. 31–36, 2019.
D. L. Parolinda and A. M. Ramdan, “Perbandingan Kualitas Citra BMP Steganografi dengan Ruang Warna RGB dan CMYK,†no. December, 2019.
R. P. Sari, U. D. Rosiani, and A. R. Syulisttyo, “Implementasi Metode Linear Discriminant Analysis Untuk Deteksi Kematangan Pada Buah Stroberi,†no. 2013, pp. 395–401, 2020.
A. S. Sinaga, “SEGMENTASI RUANG WARNA L*a*b,†J. Mantik Penusa, vol. 3, no. 1, pp. 43–46, 2019.
D. Hernando, A. W. Widodo, and C. Dewi, “Pemanfaatan Fitur Warna dan Fitur Tekstur untuk Klasifikasi Jenis Penggunaan Lahan pada Citra Drone,†vol. 4, no. 2, pp. 614–621, 2020, [Online]. Available: http://j-ptiik.ub.ac.id.
H. S. Value, “Identifikasi Kematangan Daun Teh Berbasis Fitur Warna Hue Saturation Intensity ( HSI ) dan Hue Saturation Value ( HSV ) ( Identification Maturity Tea Leaves Based on Color Feature Hue Saturation Intensity ( HSI ) and Hue Saturation Value,†vol. 8, no. November, pp. 217–223, 2020.
E. Junianto and M. Z. Zuhdi, “Penerapan Metode Palette untuk Menentukan Warna Dominan dari Sebuah Gambar Berbasis Android,†J. Inform., vol. 5, no. 1, pp. 61–72, 2018, doi: 10.31311/ji.v5i1.2740.
T. Y. Prahudaya and A. Harjoko, “Metode Klasifikasi Mutu Jambu Biji Menggunakan Knn Berdasarkan Fitur Warna Dan Tekstur,†J. Teknosains, vol. 6, no. 2, p. 113, 2017, doi: 10.22146/teknosains.26972.
S. T. Wulan et al., “OPTIMASI SELEKSI FITUR KLASIFIKASI NAÃVE BAYES MENGGUNAKAN ALGORITMA GENETIKA UNTUK PREDIKSI RISIKO KREDIT KONSUMEN (Studi Kasus : PT. Finansia Multi Finance (KreditPlus) Tanjungpinang),†pp. 1–17.
F. Y. Manik and K. S. Saragih, “Klasifikasi Belimbing Menggunakan Naïve Bayes Berdasarkan Fitur Warna RGB,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 1, p. 99, 2017, doi: 10.22146/ijccs.17838.
F. Febriana et al., “Perbandingan Klasifikasi Naive-Bayes dan KNN untuk Mengidentifikasi Jenis Buah Apel dengan Ekstraksi Ciri LBP dan HSV,†no. September, pp. 191–201, 2021.