Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer
DOI:
https://doi.org/10.31328/jointecs.v8i2.4737Keywords:
Tripadvisor, LSTM, ABSA, Adam OptimizerAbstract
Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.References
R. Filieri, F. Acikgoz, V. Ndou, dan Y. Dwivedi, “Is TripAdvisor still relevant? The influence of review credibility, review usefulness, and ease of use on consumers’ continuance intention,†Int. J. Contemp. Hosp. Manag., vol. 33, no. 1, hal. 199–223, 2021, doi: 10.1108/IJCHM-05-2020-0402.
H. Li, R. Qi, H. Liu, F. Meng, dan Z. Zhang, “Can time soften your opinion? The influence of consumer experience valence and review device type on restaurant evaluation,†Int. J. Hosp. Manag., vol. 92, no. 1, hal. 0278–4319, 2021, doi: 10.1016/j.ijhm.2020.102729.
Statista, “Tripadvisor: number of reviews 2021 | Statista,†Tripadvisor, 2022. [Daring]. Tersedia pada: https://www.statista.com/statistics/684862/tripadvisor-number-of-reviews/. [Diakses: 24-Sep-2022].
D. Liang, Z. Dai, M. Wang, dan J. Li, “Web celebrity shop assessment and improvement based on online review with probabilistic linguistic term sets by using sentiment analysis and fuzzy cognitive map,†Fuzzy Optim. Decis. Mak., vol. 19, no. 4, hal. 561–586, 2020, doi: 10.1007/s10700-020-09327-8.
J. Ara, M. T. Hasan, A. Al Omar, dan H. Bhuiyan, “Understanding Customer Sentiment: Lexical Analysis of Restaurant Reviews,†2020 IEEE Reg. 10 Symp. TENSYMP 2020, vol. 10, no. 1, hal. 295–299, 2020, doi: 10.1109/TENSYMP50017.2020.9230712.
S. Aktas Polat dan S. Polat, “Discovery of factors affecting tourists’ fine dining experiences at five-star hotel restaurants in Istanbul,†Br. Food J., vol. 124, no. 1, hal. 221–238, 2021, doi: 10.1108/BFJ-02-2021-0138.
M. Gebbels, A. McIntosh, dan T. Harkison, “Fine-dining in prisons: Online TripAdvisor reviews of The Clink training restaurants,†Int. J. Hosp. Manag., vol. 95, no. 1, hal. 0278–4319, 2021, doi: 10.1016/j.ijhm.2021.102937.
R. Khorsand, M. Rafiee, dan V. Kayvanfar, “Insights into TripAdvisor’s online reviews: The case of Tehran’s hotels,†Tour. Manag. Perspect., vol. 34, no. 1, hal. 2211–9736, 2020, doi: 10.1016/j.tmp.2020.100673.
P. Abeysinghe dan T. Bandara, “A novel self-learning approach to overcome incompatibility on TripAdvisor reviews,†Data Sci. Manag., vol. 5, no. 1, hal. 1–10, Mar 2022, doi: 10.1016/J.DSM.2022.02.001.
A. Valdivia dkk., “Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods,†Neurocomputing, vol. 353, no. 1, hal. 3–16, Agu 2019, doi: 10.1016/J.NEUCOM.2018.09.096.
O. Sharif, M. M. Hoque, dan E. Hossain, “Sentiment Analysis of Bengali Texts on Online Restaurant Reviews Using Multinomial Naïve Bayes,†1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934655.
J. A. Kumar, T. E. Trueman, dan E. Cambria, “Gender-based multi-aspect sentiment detection using multilabel learning,†Inf. Sci. (Ny)., vol. 606, no. 1, hal. 453–468, 2022, doi: 10.1016/j.ins.2022.05.057.
C. Yang, H. Zhang, B. Jiang, dan K. Li, “Aspect-based sentiment analysis with alternating coattention networks,†Inf. Process. Manag., vol. 56, no. 3, hal. 463–478, 2019, doi: 10.1016/j.ipm.2018.12.004.
D. H. Pham dan A. C. Le, “Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis,†Int. J. Approx. Reason., vol. 103, hal. 1–10, Des 2018, doi: 10.1016/J.IJAR.2018.08.003.
J. Joseph, S. Vineetha, dan N. V. Sobhana, “A survey on deep learning based sentiment analysis,†Mater. Today Proc., vol. 58, no. 1, hal. 456–460, 2022, doi: 10.1016/j.matpr.2022.02.483.
M. H. Su, C. H. Wu, K. Y. Huang, dan T. H. Yang, “Cell-Coupled Long Short-Term Memory with L-Skip Fusion Mechanism for Mood Disorder Detection through Elicited Audiovisual Features,†IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 1, hal. 124–135, 2020, doi: 10.1109/TNNLS.2019.2899884.
L. Li, T. T. Goh, dan D. Jin, “How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis,†Neural Comput. Appl., vol. 32, no. 9, hal. 4387–4415, Mei 2020, doi: 10.1007/S00521-018-3865-7/TABLES/10.
A. Krishna, V. Akhilesh, A. Aich, dan C. Hegde, “Sentiment Analysis of Restaurant Reviews Using Machine Learning Techniques,†Lect. Notes Electr. Eng., vol. 545, no. 1, hal. 687–696, 2019, doi: 10.1007/978-981-13-5802-9_60.
N. Hossain, M. R. Bhuiyan, Z. N. Tumpa, dan S. A. Hossain, “Sentiment Analysis of Restaurant Reviews using Combined CNN-LSTM,†2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, vol. 10, hal. 1–5, 2020, doi: 10.1109/ICCCNT49239.2020.9225328.
L. Li, L. Yang, dan Y. Zeng, “Improving Sentiment Classification of Restaurant Reviews with Attention-Based Bi-GRU Neural Network,†Symmetry (Basel)., vol. 13, no. 8, hal. 1517, 2021.
H. H. Do, P. W. C. Prasad, A. Maag, dan A. Alsadoon, “Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review,†Expert Syst. Appl., vol. 118, hal. 272–299, 2019, doi: 10.1016/j.eswa.2018.10.003.
S. Bessou dan R. Aberkane, “Subjective Sentiment Analysis for Arabic Newswire Comments,†J. Digit. Inf. Manag., vol. 17, no. 5, hal. 289–295, 2019, doi: 10.6025/jdim/2019/17/5/289-295.
M. Shaheen, “Sentiment Analysis on Mobile Phone Reviews Using Supervised Learning Techniques,†Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 7, hal. 32–43, 2019, doi: 10.5815/ijmecs.2019.07.04.
S. Khomsah, “Naive Bayes Classifier Optimization on Sentiment Analysis of Hotel Reviews,†J. Penelit. Pos dan Inform., vol. 10, no. 2, hal. 157–168, 2020, doi: 10.17933/jppi.2020.100206.
T. Ul Haque, N. Nawal Saber, dan F. Muhammad Shah, “Sentiment Analysis on Large Scale Amazon Product Reviews,†in 2018 IEEE International Conference on Innovative Research and Development (ICIRD), 2018, no. May, hal. 1–6.
N. Kanakaris, N. Giarelis, I. Siachos, dan N. Karacapilidis, “Making personnel selection smarter through word embeddings: A graph-based approach,†Mach. Learn. with Appl., vol. 21, no. 9, hal. 100–214, 2021, doi: 10.1016/j.mlwa.2021.100214.
S. Amin, M. Irfan Uddin, M. Ali Zeb, A. A. Alarood, M. Mahmoud, dan M. H. Alkinani, “Detecting dengue/flu infections based on tweets using LSTM and word embedding,†IEEE Access, vol. 8, no. 1, hal. 189054–189068, 2020, doi: 10.1109/ACCESS.2020.3031174.
X. Song dkk., “Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model,†J. Pet. Sci. Eng., vol. 186, no. 1, hal. 0920–4105, 2020, doi: 10.1016/j.petrol.2019.106682.
K. Ullah, A. Rashad, M. Khan, Y. Ghadi, H. Aljuaid, dan Z. Nawaz, “A Deep Neural Network-Based Approach for Sentiment Analysis of Movie Reviews,†Complexity, vol. 2022, 2022, doi: 10.1155/2022/5217491.
S. M. Qaisar, “Sentiment Analysis of IMDb Movie Reviews Using Long Short-Term Memory,†2020 2nd Int. Conf. Comput. Inf. Sci. ICCIS 2020, hal. 12–15, 2020, doi: 10.1109/ICCIS49240.2020.9257657.
K. Goseva-Popstojanova dan J. Tyo, “Identification of security related bug reports via text mining using supervised and unsupervised classification,†Proc. - 2018 IEEE 18th Int. Conf. Softw. Qual. Reliab. Secur. QRS 2018, hal. 344–355, 2018, doi: 10.1109/QRS.2018.00047.
S. Chotirat dan P. Meesad, “Part-of-Speech tagging enhancement to natural language processing for Thai wh-question classification with deep learning,†Heliyon, vol. 7, no. 10, hal. 2405–8440, Okt 2021, doi: 10.1016/J.HELIYON.2021.E08216.
Downloads
Published
Issue
Section
License
Pernyataan Hak Cipta dan Lisensi
Hak Cipta :
Penulis yang mempublikasikan naskahnya pada Jurnal ini menyetujui ketentuan berikut:
Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mengakui bahwa JOINTECS (JOURNAL OF INFORMATION TECHNOLOGY AND COMPUTER SCIENCE) berhak sebagai yang mempublikasikan pertama kali dengan lisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
- Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif  dari naskah yang telah terbit di jurnal ini kedalam versi yang lain (misal: dikirim ke respository institusi penulis, publikasi kedalam buku, dll), dengan mengakui bahwa naskah telah terbit pertama kali pada JOINTECS (JOURNAL OF INFORMATION TECHNOLOGY AND COMPUTER SCIENCE);
Lisensi :
JOINTECS diterbitkan berdasarkan ketentuan Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). Lisensi ini mengizinkan setiap orang untuk menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun, menggubah, mengubah, dan membuat turunan dari materi ini untuk kepentingan apapun, termasuk kepentingan komersial, selama mereka mencantumkan kredit kepada Penulis atas ciptaan asli.
This work is Under licensed
Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)