Artificial intelligence and socioeconomic perspective in Indonesia
DOI:
https://doi.org/10.31328/jsed.v6i2.5187Keywords:
affirmative policy, agricultural workforce, artificial intelligence, economic inequality, organizational cultureAbstract
Artificial Intelligence (AI) has begun to penetrate various social and economic activities in Indonesia. During the pandemic, social distancing activities were able to accelerate the application of AI, and promptly became a safety valve and economic driver in various sector. However, attention to AI implementation opens up space for intensive discourse. AI as a technological element also has social and economic impacts, especially social, economic and political inequality. In the midst of obtaining positive economic benefits, innovation excellence and efficiency, AI in Indonesia still faces problems with agricultural workforce (38.7 million people), ethical and legal aspects, and organizational culture. Solutions from a social and economic perspective anticipating AI include (i) affirmative policies aimed at empowering and increasing the productivity of agricultural workers, (ii) collaboration between IT experts and business practitioners, social science experts and legal practitioners to ensure AI works within a safety and legality framework; and (iii) building an organizational culture in business and public sector management to run a business that meets sustainability principles.JEL Classification J00; K20; O38References
Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability (Switzerland). https://doi.org/10.3390/su11010189
Al Ghozali, F., Destyarini, N., & Anggraini, O. E. (2022). The emergence of artificial intelligence in Indonesian healthcare services: Potential uses and possible legal risks. Proceeding of International Conference on Science, Health, And Technology, 159–170. https://doi.org/10.47701/icohetech.v3i1.2247
Aulia, C., Nugraha, E, & Parlindungan, R. B. (2023). The copyright responsibilities of artificial intelligence in the digital age. Indonesia Law Reform Journal, 3(2), 145–154. https://doi.org/10.22219/ilrej.v3i2.26042
Ayunda, R., & Rusdianto, R. (2021). Perlindungan data nasabah terkait pemanfaatan artificial intelligence dalam aktifitas perbankan di Indonesia. Jurnal Komunikasi Hukum (JKH), 7(2), 663–677. https://doi.org/10.23887/jkh.v7i2.37995
BPS. (2021). Hasil Sensus Penduduk 2020. BPS Pusat, Jakarta. https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html
BPS. (2023a). Ekonomi Indonesia Tahun 2022. BPS Pusat, Jakarta. https://www.bps.go.id/pressrelease/2023/02/06/1997/ekonomi-indonesia-tahun-2022-tumbuh-5-31-persen.html
BPS. (2023b). Indeks Pembangunan Teknologi Informasi dan Komunikasi 2022. BPS Pusat Jakarta. https://www.bps.go.id/publication/2023/09/29/cfa3a7c9e8b2397799ec6bb3/indeks-pembangunan-teknologi-informasi-dan-komunikasi-2022.html
BPS. (2023c). Statistik Ketenagakerjaan. BPS Pusat, Jakarta. https://www.bps.go.id/subject/6/tenaga-kerja.html#subjekViewTab3
BPS. (2023d). PDB Lapangan Usaha. BPS Pusat Jakarta. https://www.bps.go.id/subject/11/produk-domestik-bruto--lapangan-usaha-.html#subjekViewTab3
East Ventures. 2023. Digital Competitiveness Index 2023: Keadilan digital bagi seluruh rakyat Indonesia. Katadata Insight Center and PwC Indonesia. Jakarta. 222p.
Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65. https://doi.org/10.1016/j.ijinfomgt.2022.102497
IMD World Competitiveness Center. (2023). IMD World Digital Competitiveness Ranking 2022.
Kutyauripo, I., Rushambwa, M., & Chiwazi, L. (2023). Artificial intelligence applications in the agrifood sectors. Journal of Agriculture and Food Research, 11. https://doi.org/10.1016/j.jafr.2023.100502
Lopez-Jimenez, F., Attia, Z., Arruda-Olson, A. M., Carter, R., Chareonthaitawee, P., Jouni, H.,… Friedman, P. A. (2020). Artificial intelligence in cardiology: Present and future. Mayo Clinic Proceedings. Elsevier Ltd. https://doi.org/10.1016/j.mayocp.2020.01.038
Nordström, M. (2022). AI under great uncertainty: implications and decision strategies for public policy. AI and Society, 37(4), 1703–1714. https://doi.org/10.1007/s00146-021-01263-4
Plathottam, S. J., Rzonca, A., Lakhnori, R., & Iloeje, C. O. (2023). A review of artificial intelligence applications in manufacturing operations. Journal of Advanced Manufacturing and Processing, 5(3). https://doi.org/10.1002/amp2.10159
Pratomo, D. S., Syafitri, W., & Anindya, C. S. (2020). Expanding middle class in Indonesia. The Journal of Indonesia Sustainable Development Planning, 1(3), 307–312. https://doi.org/10.46456/jisdep.v1i3.103
Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002
Sartori, L., & Theodorou, A. (2022). A sociotechnical perspective for the future of AI: narratives, inequalities, and human control. Ethics and Information Technology, 24(1). https://doi.org/10.1007/s10676-022-09624-3
Shin, J. K., Jung, Y., & Lee, S.-H. (2022). The role of production automation in sustainable economic growth in South Korea. The Korean Data Analysis Society, 24(3), 1099–1111. https://doi.org/10.37727/jkdas.2022.24.3.1099
Sobrino-GarcÃa, I. (2021). Artificial intelligence risks and challenges in the Spanish public administration: An exploratory analysis through expert judgements. Administrative Sciences, 11(3). https://doi.org/10.3390/admsci11030102
Solos, W. K., & Leonard, J. (2022). On the impact of artificial intelligence on economy. Science Insights, 41(1), 551–560. https://doi.org/10.15354/si.22.re066
Sunarti, S., Rahman, F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria, 35, S67–S70. https://doi.org/10.1016/j.gaceta.2020.12.019
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture. KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.04.002
Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: Aied for personalised learning pathways. Electronic Journal of E-Learning, 20(5), 639–653. https://doi.org/10.34190/ejel.20.5.2597
Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447–464. https://doi.org/10.1007/s12525-020-00441-4
World Bank. (2019). Aspiring Indonesia: Expanding the Middle Class, World Bank Publication
Zhang, S., Mehta, N., Singh, P. V., & Srinivasan, K. (2021). Can an AI algorithm mitigate racial economic inequality? An analysis in the context of Airbnb. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3770371
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Publisher of Widyagama University of Malang

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.