Spatial modelling of multidimensional poverty in rural area: Evidence from Malang Regency, Indonesia
DOI:
https://doi.org/10.31328/jsed.v4i2.2245Keywords:
poverty dimension, participation, density, infrastructure, spatial neighborhoodAbstract
Poverty is a multidimensional phenomenon that causes difficulty for people to meet their needs. The research aims to scrutinize physical and social infrastructures concerning multidimensional poverty levels using the spatial approach. Jabung District, Malang Regency, Indonesia has 35% poor households in this case study. The objectives are to measure multidimensional poverty levels, social capital indices of the rate of participation (RoP) and density, and scrutinize neighborhood relationships among 15 villages using spatial regression analysis. Data collection is through a questionnaire survey of 274 heads of households. The research identified four poverty levels (very low to high), where five villages with high poverty levels (Jabung, Taji, Kemiri, Gunungjati, Slamparejo) became the targeted areas. The majority of the villages had a medium level of both the RoP and density, and the community had moderate social relations among community members. The spatial regression analysis indicates that the attribute of the RoP and weight matrix have a significant impact on the poverty level. It is recommended that poverty alleviation programs should focus upon the cluster of poor villages through social infrastructure development as the action to end poverty.JEL Classification A13; I32; R58References
Adhi, E. T. (2009). Pelayanan sanitasi buruk akar dari kemiskinan. Jurnal Analisis Sosial. 14, 76–88.
Aminou, F. A. A., & Zahonogo, P. (2020). Analysis of deprivations suffered by children under five in Benin. Journal of Socioeconomics and Development, 2(2), 125. https://doi.org/10.31328/jsed.v2i2.1219
Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1–17. https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Ari, I. R. D. (2010). Participatory Approach to Community Based Water Supply System. Dissertation. Kyoto: Kyoto University Research Information Repository.
Ari, I. R.D., Hariyani, S., & Waloejo, B. S. (2019). Neighbourhood relationship among villages in Gedangan District: Multidimensional poverty approach. IOP Conference Series: Earth and Environmental Science (Vol. 328). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/328/1/012043
Ari, I. R.D., Hasyim, A. W., Pratama, B. A., Helmy, M., & Sheilla, M. N. (2017). Infrastructure and social tie: Spatial model approach on understanding poverty in Malang regency, Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 70). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/70/1/012017
Ari, Ismu Rini Dwi, Jeong, H., Matsushima, K., & Kobayashi, K. (2014). Network analysis of community based water management. In Community Based Water Management and Social Capital. IWA Publishing. Volume 13. https://doi.org/10.2166/9781780405469
Ari, I. R. D., Waloejo, B. S., Hariyani, S. (2020). Modelling of poverty eradication in Kedungkandang District, Malang City. International Journal Of Engineering Research & Technology (IJERT) (09), 05 (May 2020). http://dx.doi.org/10.17577/IJERTV9IS050589
BPS (Central Bureau of Statistics). (2018a). Jumlah Penduduk dan Presentase Penduduk Miskin dan Garis Kemiskinan Menurut Kabupaten/Kota di Jawa Timur Tahun 2018. BPS: Jawa Timur.
BPS (Central Bureau of Statistics). (2018b). Kabupaten Malang Dalam Angka Tahun 2018. ISSN: 0215-5680 BPS: Kabupaten Malang.
Elia, A., Yulianto, Y., Tiawon, H., Sustiyah, S., & Indrajaya, K. (2020). Government expenditure and poverty reduction in the proliferation of new administrative areas of Central Kalimantan, Indonesia. Journal of Socioeconomics and Development, 3(2), 145. https://doi.org/10.31328/jsed.v3i2.1410
Gibbs, J. P., & Coleman, J. S. (1990). Foundations of social theory. Social Forces, 69(2), 625. https://doi.org/10.2307/2579680
Griffith, D. A., & Anselin, L. (1989). Spatial econometrics: Methods and models. Economic Geography, 65(2), 160. https://doi.org/10.2307/143780
Humanitarian Data Exchange. (2020). Indonesia: Global Multidimensional Poverty Index (MPI). Retrieved from https://data.humdata.org/dataset/indonesia-mpi/resource/c1a8793f-b386-4f47-9505-4dfee1118c22
KEMENKES RI. (2010). Keputusan Menteri Kesehatan RI No : 1995/MENKES/SK/XII/2010. In Kementerian Kesehatan RI.
Matthews, P. & Besemer, K. (2014). Poverty and social networks evidence review. Institute for Social Policy, Housing, Environment and Real Estate (I-SPHERE), Heriot-Watt University. Retrieved from https://core.ac.uk/download/pdf/42543158.pdf
MPI Research Team. (2015). Modul Pelatihan Perhitungan Multidimensional Poverty Index Indonesia dan Penyusunan Pelaporan MPI Indonesia. Retrieved from http://theprakarsa.org/workshop-pelatihan-perhitungan-dan-analisis-multidimensional-poverty-indexs-mpi-dan-penyusunan-laporan-mpi-daerah/
National Planning Board. (2016). National Development Framework.
Ostrom, E., & Ahn, T. K. (2003). Introduction to Foundations of Social Capital. Edward Elgar Publishing, 1–24. Retrieved from http://era-mx.org/biblio/Ostrom_and_Ahn_2003.pdf
Putnam, R. D. (2001). Reviewed work: Bowling alone: The collapse and revival of American community. Contemporary Sociology, 30(3), 227–230.
Scott, J. (2000). Social Network Analysis: A Handbook. United Kingdom: SAGE Publications. https://books.google.co.id/books?id=MJoIGBfYDGEC
UNDP. (2016). Overview: Human Development Report 2016. United Nations Development Programme, 1–40. Retrieved from http://hdr.undp.org/en/2016-report
Wasserman, S., Faust, K. (1994). Social Network Analysis: Methods and Applications. Hungary: Cambridge University Press. https://books.google.co.id/books?id=CAm2DpIqRUIC
Yamin, S., & Dartanto, T. (2016). Pengentasan orang miskin di Indonesia: Peran modal sosial yang terlupakan. Jurnal Ekonomi Dan Pembangunan Indonesia, 17(1), 88–102. https://doi.org/10.21002/jepi.v17i1.656
Yuriantari, Nurmalia Purwita, et al. (2017). Analisis autokorelasi spasial titik panas di Kalimantan Timur menggunakan Indeks Moran dan Local Indicator of Spatial Autocorrelation (LISA). Eksponensial. (8), 1, 63-70. Retrieved from http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/78